
2020
Benchmark Report

Through the
SIG looking glass

� Welcome Letter

� The Software Build Quality Trend

� Software Build Quality Ranking by Industry

� Software Build Quality Ranking by Tech Stack

� The Impacts of Software Monitoring

� The Impacts of COVID-19

 on Software Build Quality & Productivity

� Final Thoughts

Contents

3

6

7

10

12

16

18

2

As we enter a new decade and manage through the impacts

of a global pandemic, one thing is certain: the value of digital

channels and operations is now more important than ever.

“Digital-first” business strategies will continue to power

organizations, underscoring the importance of software as a

critical success factor.

Software Improvement Group (SIG) has been at the forefront of getting

software right since its inception in 2000. For the past 11 years, we’ve been

building our software assurance benchmark database, which now contains

more than 36 billion lines of code in more than 280 languages, from more

than 5,000 assessments of software systems. This data provides us with

unique insights into the state of software assurance and key industry

trends.

We published our first report on the state of the software industry in 2019,

presenting the most significant takeaways from our benchmark data at the

first annual SIG Symposium in Amsterdam.

We’re now proud to share with you the 2020 Benchmark Report. Like last

year’s report, this edition includes a number of interesting insights:

Firstly, we take a look at the general state of affairs. Is build quality still

improving, as we saw last year? Or has the trend changed? What are the

driving factors behind the trend? Then, answering a question we often

receive, we examine the differences between industries.

A Letter from Dr. Luc Brandts and
Dr. Magiel Bruntink

3

Who is performing best, and who has seen the greatest improvement?

What’s the reason behind this? Similarly, we show the differences between

the key tech stacks in use. Where do we see the strongest performance?

Next, we explore the impact of software quality monitoring. Last year,

we completed a first-time analysis showing a positive impact of SIG

monitoring, which prompted us to take a deeper dive. This year’s report

delivers remarkable new insights on this important topic.

Finally, in these unprecedented times, it would be impossible to ignore the

massive changes resulting from the coronavirus crisis. Working from home

has become the new standard, to name just one. And we were curious, as

we’re sure you are, too, as to what the impact of this new arrangement has

been on the production as well as build quality of software. This report will

tell you.

It has always been our mission to create a healthier digital world. We

believe the results and valuable insights revealed in this report can be

applied in your daily work and hope they will help you to further improve

the digital health of your own organization.

Sincerely,

Dr. Luc Brandts
CEO

Dr. Magiel Bruntink
Head of Research

4

280+
technologies from
mainframe to mobile

5.070+
systems
evaluated

470+
customers

36+ billion
lines of code in software
assurance database

170+ million
lines of code analyzed weekly

190,000+
system snapshots

 SIG
Software Assurance
by the Numbers

5

The Software Build
Quality Trend

This analysis was done using the 2019 model, applying it to all years, for

consistency. Next year, we will be using the 2020 model; so as the industry

average per definition is 3 stars, next year’s line will be (slightly) lower.

Note that this also means that organizations will have to improve their

software to stay at the same level. If you’re at industry average today, but

take no action toward improving your code quality, you will find yourself

below par next year.

Last year’s Benchmark Report revealed that software build

quality has steadily, but very slowly, increased over the last

ten years. We’re pleased to see that this trend has continued.

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

BU
IL

D
 Q

U
A

LI
TY

2019 BENCHMARK REPORT

DATA OBTAINED WITH SIG MAINTAINABILITY MODEL VERSION 11 (2019), 5000 SYSTEMS INCLUDED.

HHHHH

IHHHH

IIHHH

IIIHH

IIIIH

[graph 1]

6

The drivers behind this continued trend can be found in the details behind

this analysis. We’re seeing that code is, again, generally smaller and less

complex than before. This trend is strengthened by the growing usage

of Low Code and BPM solutions, but this is certainly not the only reason.

We’re also observing this trend in other tech stacks, such as Microsoft .NET-

based technologies. One warning sign is that Component Independence

is trending down year-over-year. With components generally becoming

smaller, there also tends to be more of them, making it increasingly

difficult to maintain a proper architecture. At this stage, this negative

element of more complex architectures is still outweighed by the other

factors. As the trend continues, however, this negative effect could

potentially reverse it. At some point, this trend will counter the overall

positive trend, so care should be taken. We are keeping a close eye on

architectural developments, also by introducing new components to our

architectural measurement model.

Software Build Quality
Ranking by Industry

A popular question for debate is whether performance be-

tween industries can be evaluated and compared. Is it true

that software made in the government sector is really the

worst out there, or is this a perception created by the media?

Wouldn’t the software business itself be the top performer,

as the true specialists in the world?

Please note that these are industry averages based on many thousands

of systems. In each industry, we find both strong and weak performers.

Here, we present the average, so caution should be taken in drawing broad

conclusions.

7

We can first conclude that the results are quite revealing, and the

differences are significant. The difference between the best-performing

industry, Energy, Oil and Gas, and the worst-performing industry,

Telecommunications, is more than a half star rating. Telecommunications,

an industry of great significance, places dead last in 12th, well below the

industry average.

Of course, many more industries exist. For some, we simply don’t have

enough data to provide a valid ranking. If you’d like to learn more about

how your industry is performing, please contact us at the e-mail address at

the end of this report.

When looking at Government, we first see that this sector ranks just above

average. Given the inherent complexity of government software, this is

not a poor result. Government has some unique aspects much different

from other industries. Requirements often stem from laws and regulations

resulting from compromise and long debate – and not necessarily aligned

Rank Industry
Average rating

in 2017 - 2020

1 Energy, Oil & Gas 3,29

2 Industrial Transportation 3,27

3 Financial Services 3,23

4 Banking 3,15

5 Government 3,03

6 Insurance 3,03

7 Media 2,90

8 Health Care 2,85

9 Retail 2,81

10 Support Services 2,78

11 Software & Computer Services 2,72

12 Telecommunications 2,65

8

with IT possibilities. In addition, as opposed to most other sectors,

Government typically needs to serve a very broad community, for which all

exceptions need to be considered. Prior legislation must also be kept intact,

leading to inherently more complex systems. It is quite noteworthy that

Government ranks ahead of the Software & Computer Services industry.

Here, especially, it is important to note that there are many outliers in

both directions. That being said, there is still a lot of ground to cover. SIG

develops at a minimum of 4 stars as an acceptance criterium, and we

advise other organizations to strive for the same level.

There are many more interesting details hidden in these analyses. For

example, we compared the quality of software between the Banking

and Government sectors over the last ten years. There, we see that for

approximately the first seven years, Government was actually performing

(slightly) better than Banking. However, in the last three years, Banking

has taken a tremendous leap in quality, clearly overtaking Government.

Apparently, the banking world has paid extra attention to software quality,

which demonstrates very strong steps forward.

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

BU
IL

D
 Q

U
A

LI
TY

INDUSTRY GOVERNMENT BANKING

HHHHH

IHHHH

IIHHH

IIIHH

IIIIH

[graph 2]

9

Software Build Quality
Ranking by Tech Stack

Similarly, we analyzed the differences between the various

tech stacks. As we conduct assessments on more than 280

different technologies, some of them quite obscure, we’ve

bundled them into six groups:

� JVM, Java-related technologies

� Microsoft .NET-related technologies

� Packaged solutions, customizations of configurable ERP, CRM systems

� Legacy technologies, such as COBOL, and other 3GL/4GL languages

� Scripting and mobile technologies

� Low-code and BPM technologies

Rank Technology stack Average rating
in 2017 - 2020

1 Low code & BPM 3,23

2 Scripting and Mobile 3,21

3 JVM 3,20

4 Microsoft 2,93

5 Packaged solutions 2,57

6 Legacy/3GL/4GL 2,36

10

Perhaps not surprisingly, the Legacy category yields the poorest results

in build quality. Obviously, this is due to the fact that these technologies

are less advanced, but it’s also the result of them typically being part of

highly-complex systems. The fact that they’re still out there is, in part, due

to their complexity that has, thus far, prevented their replacement. We also

see that customizations of packaged solutions are still considerably below

industry average; despite a gradual increase in quality over the past years,

it’s clear that the industry needs to improve.

The top three technology stacks are very close, within hundredths of

stars, and hence too close to declare a clear winner. Systems in Microsoft

technologies are trailing a bit, leading to a below-average score. Please

note that this difference wouldn’t grant the preferred selection of Java over

Microsoft; for that, the differences are still too small, and there would be

too many other factors influencing such a decision.

Low Code & BPM technologies are modern software development

technologies that facilitate high build quality, given that they’re applied

in the right way. For example, our analysis shows that for larger systems,

Java and Microsoft-based technologies are on par and even better than Low

Code & BPM. From that, we can derive that Low Code & BPM technologies

should primarily be used for what they’re best designed for: smaller

applications.

TECH STACK LOW CODE & BPM JVM MICROSOFT

VOLUME PERSON MONTHS

1.0 10.0 100.0 1,000.0

HHHHH

IHHHH

IIHHH

IIIHH

IIIIH

BU
IL

D
 Q

U
A

LI
TY

[graph 3]

11

The Impacts of
Software Monitoring

The next topic is near and dear to our hearts, as it pertains to

the relevance of our services. The higher the quality of soft-

ware, the lower the Total Cost of Ownership (TCO). Based on

our research, we have been able to estimate this cost of own-

ership. When looking at the thousands of systems we moni-

tor, from very small to very large, we’re able to put them into

perspective and show the overspend. The overspend of TCO is

calculated based on the idea that, ideally, a system would be

built at 4 stars.

€ 0.- € 100,000.- € 141,000.-

Actual maintenance costs of example HHHII system X

Maintenance cost of system X at build quality HHHHI

OVERSPEND € 41K

The picture above illustrates the concept of overspend. Take a system that

is built at a 3-star build quality level with annual maintenance costs of

141,000 Euro. If that same system would have been built at a 4-star build

quality level, we estimate a maintenance cost of 100,000 Euro annually.

This implies an overspend of 41,000 Euro for this 3-star system every year.

Now, let’s take the concept one step further. For all the systems in our

software analysis database, we can now calculate this overspend. Systems

[graph 4]

12

with lower build quality will have more overspend; larger systems will

be more expensive to maintain, so their overspend will be higher as well.

When we add up all the overspend of all the systems, we end up with the

“Legacy Mountain” shown in the 3D plot on this page.

Next, we look at the impact of SIG monitoring on build quality. Does it

make a difference? Spoiler alert: Yes, it does. And quite a bit, actually.

We differentiate between systems that are monitored:

 � consistently

 � inconsistently

 � not at all

The third group requires some explanation. In order to evaluate build

quality level, the system obviously needs to be measured. But how could

we know the quality of systems we aren’t actively monitoring? This third

group is composed of open source systems, so we actually do measure

them, unbeknownst to the developers. In order to calibrate our benchmark

[graph 5]

13

model, SIG measures a large group of open source systems with developers

around the world. These systems are selected in collaboration with TÜViT,

a globally-recognized evaluation and certification organization, which

also serves as the independent auditor of the SIG software measurement

models. This test group can be used as a reference for systems who develop

over the course of their lifetime without actively steering on quality, other

than employing standard methods. The differences are staggering and

clearly demonstrate the benefit of continuous SIG monitoring.

The following graphs show how systems accumulate overspend during

24 months of development. The overspend has been normalized to the

unmonitored group; it therefore shows 100% there in month 24.

The first graph [graph 6] clearly shows that the accumulation of overspend

in unmonitored systems increases at a rapid pace, leading to the Legacy

Mountain pictured on the previous page.

The next graph [graph 7] includes systems monitored inconsistently. Here,

we see that inconsistent monitoring has a positive effect, but significantly

less than consistent monitoring. Consistent monitoring helps to keep the

feedback cycle as short as possible.

0 5 10 15 20 25

A
CC

U
M

U
LA

TE
D

 O
V

ER
SP

EN
D

MONITORING MONTH

MONITORING LEVEL CONSISTENT UNMONITORED

150%

100%

50%

0%

-50%

[graph 6]

14

These graphs show that SIG monitoring has a direct impact on the quality

of the software, and, as a result, on the maintenance overspend as well.

It shows that even in the worst case, systems monitored by SIG perform

better than the best performing unmonitored systems. For larger systems,

the overspend can go into the many hundreds of thousands of Euros per

year. And the impact on speed of development and, thus, innovation can’t

be forgotten. As shown in research conducted by SIG back in 20111, making

changes to a 4-star system can be done three and a half to four times faster

than in a 2-star system. Let that sink in: modifications can be made almost

four times faster in a system of high build quality. And when comparing a

5-star system to a 1-star system, the differences are even more staggering:

development in a 5-star system is more than ten times faster than in a

1-star system. Intuitively, most people grasp the significance of these

findings, but probably still underestimate the true magnitude of the

impact. At SIG, we have the numbers to support that intuition.

The overspend is the financial factor, significant enough in and of itself,

but the development speed factor may be an even more compelling reason

to continuously clean up the mess. The analysis shows that consistent SIG

monitoring helps maintain a high build quality – and with that, a low cost

of ownership and high speed of innovation.

1 Bijlsma, D., Ferreira, M.A., Luijten, B., & Visser, J. (2011). Faster issue resolution with higher

technical quality of software. Software Quality Journal, 20, 265-285.

0 5 10 15 20 25

A
CC

U
M

U
LA

TE
D

 O
V

ER
SP

EN
D

MONITORING MONTH

MONITORING LEVEL CONSISTENT INCONSISTENT UNMONITORED

150%

100%

50%

0%

-50%

[graph 7]

15

The Impacts of COVID-19 on
Software Build Quality &
Productivity

Without any doubt, the coronavirus has had the largest

impact on our society in recent memory. One of the immedi-

ate effects of the pandemic has been that many people have

begun working from home. Anecdotally, we’ve heard stories

about teams whose production has skyrocketed, as well as

those whose production has slightly decreased.

The SIG development team has seen a rather constant level of production

with no real impact from remote working. But these are all anecdotes, not

a fact-based trend. As SIG is in the unique position of analyzing thousands

of systems regularly, we’re able to provide this insight. Has COVID-19 and

the resultant governmental measures had an impact on the production

of code? And, at the same time, has the quality suffered? Or has it even

benefited?

%
 O

F
SY

ST
EM

S
(N

=3
68

) 15%

10%

5%

0%

-5%

VOLUME PERSON MONTHSMAINTAINABILITY

DEC JAN FEB MAR APR MAY DEC JAN FEB MAR APR MAY

SYSTEMS THAT PERFORMED ABOVE AVERAGE SYSTEMS THAT PERFORMED BELOW AVERAGE

[graph 8]

16

We’re comparing data from the months of March, April and May, 2020

(pandemic-influenced) with data prior to March, 2020 (not pandemic-

influenced).

We’ve built a statistical model to predict the expected changes in build

quality and production of code, based on long-term historical data.

With this model, we’re able to predict what to expect in terms of both

elements within a band of normal monthly variation. Without going into

the statistical details, the above graph shows that something interesting

happened in March. With previous months being more or less within the

expected band, March appears to be a clear outlier. We see a remarkable

peak in systems that increased their build quality above expectation.

Where we normally would have seen a maximum of 5% of systems showing

exceptional changes, this month shows more than 15%. Similarly, we notice

that 10% of systems showed production above expectation, while just a

small percentage fell below. However, things seem to return back to normal

in April and May.

The conclusion could be that COVID-19 hasn’t, thus far, had any impact

on build quality, nor production. But we suspect there’s more to the story;

clearly, something positive happened in March. Did procedures change? Did

ways of collaboration become less formal? Was there greater opportunity

for improvisation by teams? Whatever it is, it had a positive effect. We

encourage development teams to think about the positives we had in March

that seem to have been lost again in April and May.

At SIG, such events and observations make us curious. Stay tuned for further

updates while we continue this research.

SYSTEMS THAT PERFORMED ABOVE AVERAGE SYSTEMS THAT PERFORMED BELOW AVERAGE

17

18

Final Thoughts
We’re pleased to see that the build quality of software continues to

gradually improve. However, at the same time, there are underlying trends

that have the potential to reverse this, which leads us to remain cautious.

The positive impact of Low Code may be outdone by a lack of focus on

architecture and quality in general, especially for larger systems.

It’s also encouraging to see what the impact of focus can be. The progress

in quality demonstrated by the Banking industry is a clear example of the

significant step forward that can be made with true focus. As this is an

analysis based on quite a large number of systems, the results actually

speak volumes. The analysis also shows, however, that there’s still a lot of

ground to cover.

That being said, perhaps the most important conclusion of this analysis

was the impact of monitoring. Our analysis demonstrated that software

build quality gradually decreases when it’s not being consistently

monitored; just as a garden needs constant care, software requires

attention in order to make the necessary progress. A garden with a lawn

that’s mowed only occasionally will never be prize-winning. Software is no

different.

21

Colophon

Copyright © 2020

by Software Improvement Group (SIG)

Authors: Dr. Luc Brandts and Dr. Magiel Bruntink

The information in this document may not be copied

or published, distributed or reproduced in any way

whatsoever without the prior written consent of SIG or

the legal consent of the owner.

Design: Plushommes

Art: Rawpixel

20

Corina Kuijlen

Fred. Roeskestraat 115

1076 EE Amsterdam

The Netherlands

www.softwareimprovementgroup.com

marketing@softwareimprovementgroup.com

Getting software r ight for a healthier digital world

