
Automating document error detection from
reimbursement requests
Business objective
Process Optimization
Sector
Bank and Insurance

Document error detection to reduce errors and manual
processes

If you ask your customers to fill in a template document, there might be errors in
the information provided by the customers. It means that you must manually
check if there are errors before validating the document. This way of working is
a costly process that requires a lot of employees to verify each document.

An insurance company contacted us because they receive more than 100,000
bills from their customers for medical reimbursement per year. The following
document error detection project consisted of classifying bills into two
categories: 1) the document requires modification, or 2) it does not. The input
data has 117,000 bills and 312 features. We can break it down into the features:

• Flag features about the presence of a particular code line in the bill
• Amounts displayed on the bill (reimbursement amount, supplementary

amount, total amount)
• Type of hospital, rooms, and invoices
• Metadata about the bill (number of entries and dates)

Most of the errors come from using the wrong code for services received by the
hospital. Then it comes from the date used in the bill that is not the correct one,
or the amount specified is not correct either.

Preprocessing the data for document error detection

Before sending the data into the model for our document error detection, it is
better to preprocess it first. We can create new variables to yield better
performance, which is called feature engineering. We must categorize

continuous variables into bins. Then we must transform categorical variables into
numerical variables so the model can process them.

Feature engineering for document error detection

To achieve this, we use the cobra library, which implements several functions to
preprocess the data. Cobra is handy because you can apply and fine-tune
different preprocessing functions using only a preprocessor object.

Feature engineering

We can try to help the model discover new patterns in the data by creating
new variables. The interaction between different variables can make these
variables. For example, we create the proportion of reimbursement amount by
dividing the reimbursement amount by the total amount.

We can also find patterns in data through time. So, if you have a date variable, you
can use it to create a month, weekday, and season variable. The model might find
hidden cycles appearing during months, weekdays, or seasons.

https://github.com/PythonPredictions/cobra

Kbins Discretizer

Kbins Discretizer will bin continuous data into intervals of a predefined size . It is
interesting because it can introduce nonlinearity to the model. You can set a
number of bins and the strategy used to create the bins. There are three
strategies in KBinsDiscretizer:

• Uniform: The bin widths are constant in each dimension.
• Quantile: Each bin has the same number of samples.
• Kmeans: The discretization is based on the centroids of a KMeans

clustering procedure.

Categorical data preprocessor

The Categorial data preprocessor implemented by Cobra will regroup the
categories of categorical variables based on significance with the target
variable. A chi-squared test determines if a category is significantly different
from the rest of the categories for the classification model, given the target
variable.

We can set the p-value threshold to consider at which p-value the categories are
significant or not. If the category is not significant, it will be regrouped under the
“Others” category.

We can also set the minimal size of a category to keep it as a separate
category. It will be regrouped under the “Others” category if the category size is
below this minimal size.

There is also an option to replace the missing values with the additional category
“Missing.”

This module enables us only to keep relevant categories and diminish the number
of isolated data samples in the dimension space.

Target encoding

Target encoding (or Mean encoding) computes the ratio of positive
occurrences in the target variable for each feature. It is a way to transform
categorical values into numerical values.

The target encoding method for document error detection

Target encoding is the preferred method over the traditional one-hot encoding
because it does not add additional columns. One-hot encoding would add many
dimensions to our dimensional space that is already composed of 300 features. A
high-dimensional space has two problems:

• It increases the usage of memory and computation.
• It increases the capacity of the model to overfit the data.

So target encoding enables to reduce the memory and computation usage and
the overfitting of the model.

However, target encoding might still introduce overfitting because it computes
the ratios based on the training samples we give. The ratios might not be the
same in the test sample. For example, in our test sample, ‘Small rooms’ might have
a ratio of 0.75 instead of 0.5. We can reduce this problem by using additive
smoothing. Cobra chooses to implement it for its target encoding class. When
computing the ratio of positive occurrences for each categorical value, it adds
the ratio of positive occurrences of the target variable proportionally to a weight.
Max Halford explains it in a detailed manner in his article.

Model and results for document error detection

Based on the client's need, the appropriate metric is the Area Under the Curve
(AUC).

We select the features that increase the AUC substantially. To avoid having too
many dimensions and reduce the possibility of overfitting, we only selected the
features that increased the AUC by a substantial margin. In other words, we
performed a forward selection.

https://maxhalford.github.io/blog/target-encoding/

The best model is the Gradient boosting tree. We use the XGBoost library, an
optimized distributed gradient boosting library designed to be highly efficient,
flexible, and portable. The library implements early stopping to avoid overfitting
the training data. It is also possible to specify other parameters, such as the
maximum depth of each tree or the minimum sum of instance weight needed for
a child. You can check all the parameters available here.

We achieved an AUC of 86.3%.

ROC Curve as a result of the Document Error Detection project

Conclusion

We were able to automate 47% of the bills with an error rate of 3.06%. It means
that around 55,000 documents did not need manual review, saving countless
hours for the client.

https://xgboost.readthedocs.io/en/latest/parameter.html

About Agilytic
Since 2015, Agilytic helps innovative leaders solve their biggest challenges
through the smarter use of data. With over 150 successful projects to date,
we have perfected a pragmatic approach to putting data at the service of
business goals, be they commercial, operational, financial, or human. Reach
out today for a quick introduction, we’d love to hear from you.

	Automating document error detection from reimbursement requests
	Document error detection to reduce errors and manual processes
	Preprocessing the data for document error detection
	Feature engineering
	Kbins Discretizer
	Categorical data preprocessor
	Target encoding

	Model and results for document error detection
	Conclusion
	About Agilytic

