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More and more, organizations apply Machine Learning and related algorithms to 
the automated processing of documents, a field otherwise known as Optical 
Character Recognition (OCR). 

If you have to deal with high quantities of visual or textual files, you can spare a lot 
of time and expenses using ML and automation found within the right tools 
instead of manually handling the files. 

This article covers the approach taken in one of our projects for the challenge of 
document classification and information extraction . In the context of this 
project, our client wanted to insert an automated process to classify documents 
in their already well-developed operations ecosystem. The objective was to 
receive PDF scans filled manually by customers, retrieve all necessary 
information, and send it to the client. 

The solution for document information extraction  

We created a pipeline composed of a series of checks and processing steps. 
Each PDF went through this pipeline to be fully processed. 

First, we recognized the current template among a set of possible templates. The 
template is recognized by its front page, containing a header and usually other 
special features. These features make the differentiation easier in OpenCV. We 
use the function cv2.matchTemplate to get a correlation score between the 
current document's first page and all the first pages of the database of templates. 
If the best candidate has a correlation score higher than a minimum threshold, the 
template is considered as recognized. 

We housed the database of templates and their configuration files on a bucket S3 
on AWS, queried from inside a Docker image containing the pipeline. 



After this, each page of the current document we needed to process had to link 
to its matching page of the identified reference template. The use of that step is 
to ensure that the algorithms know on which page they are working. This is crucial 
to determine which information corresponds to which question on the document. 
The pipeline compares the first page of one reference document to the first page 
of another in treatment, and so on. If there are missing pages or unordered scans, 
the pipeline sends the document for manual review. Comparison page by page 
uses the same principle as template recognition, with heavy use of our 
dear cv2.matchTemplate. 

Once we identify the pages, the information boxes of each page are then 
automatically detected. The detection is done by mainly using the 
functions cv2.morphologyEx and cv2.connectedComponentsWithStats from OpenCV. 
cv2.morphologyEx to apply a horizontal and vertical edge filter on the pages. 
And, cv2.connectedComponentsWithStats finds the closed boxes created by the 
vertical and horizontal edges and returns their positions. 

After, one more filtering is applied to keep the boxes fulfilling particular position 
and dimension constraints. From the final positions, the pipeline crops the 
information boxes from the main page image. The boxes, in our case, are 
containing the answers to the questions of the document. The pipeline specifies 
constraints in the config file of the template. 

If the pipeline functions did not detect all information boxes on a page, then the 
step is assumed to be failed, and the pipeline sends the document for manual 
review. 

This pipeline sends cropped images to a Convolutional Neural Network (CNN). The 
network of neurons already trained decides each checkbox and associates it with 
a confidence level. The confidence level is the probability associated with the 
label of the content of the box. If it is under a certain threshold probability, it 
means the model is unsure about the content, and the pipeline sends the 
document for manual review. 

If all the previous steps have succeeded, the pipeline sends the answers to the 
client in a JSON format. 

The challenges during document information extraction  

We met a few challenges during the development; the variety of templates, the 
variety of human behavior, and the hard reliability requirements. 



Variety of templates  

First, for the company, there are about ten different templates currently in use. To 
have good coverage, the pipeline had to be able to recognize a few of them. We 
opted for the two most common ones, who make 90% of all documents. 
Moreover, for each template, we needed a configuration file for the algorithm to 
link the detected boxes to their question specifications. 

The solution: Because this configuration can be complex for a non-initiated user, 
we created a template generator to add any new template in a few clicks. 

Variety of human behavior  

Another challenge was to realize the variety of human behavior in filling 
documents and try to cope with it. We had to find the trade-off between 
maximizing the coverage of automation and minimizing the process's complexity. 
A complexity that increases with the more particular cases you want to cover. 

Moreover, especially for the classification of boxes with the Neural Network, it is 
impossible to ensure 0% error in the current framework. Because the documents 
were not initially created to be automatically treated, customers sometimes fill 
their answers in the most interesting way. 

The solution: There is no correct answer to find a good trade-off. Depending on 
the client, you could spend more time developing a highly complex infrastructure 
to process almost 100% of documents, therefore maximizing the coverage. But 
the cost of creating such an infrastructure would not be worth the gain. Usually, a 
client will want to optimize his Return On Investment (ROI), keeping in mind that 
paper documents are getting rarer with the all-digital era. 

Concerning the filling of the boxes, the only way to cope with it is to install a clean 
framework where we explain the method of filling to the customers. That 
framework should appear on future templates. 

A hard requirement in reliabil ity for  document information extraction  

Finally, we had to meet a hard requirement in reliability, ideally 0% of error. In 
machine learning terms, we had to assure 100% precision, which is the 
consequence of depleting the recall, a.k.a. the coverage. 



High reliability is necessary for our clients to have complete trust in the 
automation and integrate it into their operations. However, this has the 
consequence of diminishing the number of documents that we can automate. 

The solution: For a given architecture, the typical way to find the best pipeline 
with this 100% precision while maximizing the coverage is to do hyperparameters 
optimization. Using the dataset of previous documents, one can tweak the 
parameters at each step while fulfilling the two conditions. The parameters here 
are mainly the thresholds of correlation for template and page recognition and 
the confidence threshold of the neural network. If we choose a very harsh 
threshold, we will assure 100% precision, but the coverage will deplete. If we 
choose it too loosely, errors will arise, and 100% precision is lost. We developed 
two versions. 

The tools for document information extraction  

We used a series of tools to implement such a pipeline and put it into full 
production, namely OpenCV, PyTorch, Docker, and AWS. 

OpenCV  

We made heavy use of the OpenCV library at different steps of the 
process. OpenCV is a known open-source library for classical computer vision. 
We used it for template recognition, page order checking, and automatic 
detection of the information boxes. 

PyTorch  

We developed the neural network model in PyTorch. It is a Convolutional Neural 
Network (CNN), perfect for image classification. Transfer learning was applied by 
starting from the pre-trained ResNet50 architecture before training on the 
client’s images. The CNN is giving the class and a probability score on how 
confident it is about its choice. This score is helpful to ensure no 
misclassifications. 

Docker  

We deployed our pipeline in a container using Docker. The real advantage behind 
it is to stop worrying about compatibility issues when deploying to new servers. 
The process runs in the “black box” container and works on any machine 
having Docker installed. 

https://opencv.org/
https://pytorch.org/
https://www.docker.com/resources/what-container


Amazon Web Services  (AWS) and  the Cloud Development Kit  

Our client already had multiple services in a stack deployed on AWS. We ensured 
to fit this project with the rest of their ecosystem. In practice, it means that the 
operations are running daily on the servers of Amazon, rented by our client. 

The advantage of using the Cloud Development Kit is that all the infrastructure 
can be specified as code and deployed in the command line. The main 
components used are Buckets, Lambda functions, and the Elastic Container 
Service and Batch. All this allows to deploy Docker containers and adapt flexibly 
to the number of documents to process by allocating more or fewer servers. 

AWS also offers a tool to do human image labeling on big datasets efficiently. It 
was instrumental to train the Neural Network on the client’s data. The tool 
dispatches the labeling to different persons who will assign the proper label to 
the image. 

Conclusion 

In the final version of our solution, the client could automate 47% of all 
documents coming to the pipeline after the document information extraction. It’s 
safe to say this saved the client a considerable amount of time and expenses. 

Gain estimation for  document information extraction 

Our client receives 100 documents each day on average. Each document takes 75 
seconds to be manually processed. The client estimates that it costs 
about 26.000 € per year. Given the pricing of Amazon servers, our installation 
cost should be less than 100 € per year, which is negligible. Because we automate 
~50% of the documents, the spared amount per year is ~13.000 €. 

The other impact is that because we made the architecture with modularity, it 
could be with lesser cost extended to different types of client documents, where 
there is information extraction involved. 

Limitations and possible improv ements  

The pipeline will work if the document is from a suitable template, with pages in 
the correct order, and the document has correctly completed information in the 
dedicated boxes. 

https://aws.amazon.com/


Another possible risk that can arise in such machine learning processes is the 
evolution of data. This is called dataset shift. If the types of templates change, if 
the quality of the pdf scans deteriorates, the coverage could drop. To address 
such a problem, reporting daily performances must be put in place to measure 
any sizable difference in results. 

Ideas to improve the automation coverage would be to create better-filling 
guidelines in the document and only keep one good template for the document. 

For the current architecture, two direct improvements could give better results: 
improve the boxes' automatic detection (only 75% that could come close to 
100%) and an automatic reordering of the pages of an unordered document. 

Finally, to ensure a significant ROI, the ideal would be to extend the architecture 
to all documents still treated manually containing information boxes. 

About Agilytic 
Since 2015, Agilytic helps innovative leaders solve their biggest challenges 
through the smarter use of data. With over 150 successful projects to date, 
we have perfected a pragmatic approach to putting data at the service of 
business goals, be they commercial, operational, financial, or human. Reach 
out today for a quick introduction, we’d love to hear from you. 
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