
A complete approach to automating
document information extraction
Business objective
Process Optimization
Sector
Bank and Insurance

More and more, organizations apply Machine Learning and related algorithms to
the automated processing of documents, a field otherwise known as Optical
Character Recognition (OCR).

If you have to deal with high quantities of visual or textual files, you can spare a lot
of time and expenses using ML and automation found within the right tools
instead of manually handling the files.

This article covers the approach taken in one of our projects for the challenge of
document classification and information extraction . In the context of this
project, our client wanted to insert an automated process to classify documents
in their already well-developed operations ecosystem. The objective was to
receive PDF scans filled manually by customers, retrieve all necessary
information, and send it to the client.

The solution for document information extraction

We created a pipeline composed of a series of checks and processing steps.
Each PDF went through this pipeline to be fully processed.

First, we recognized the current template among a set of possible templates. The
template is recognized by its front page, containing a header and usually other
special features. These features make the differentiation easier in OpenCV. We
use the function cv2.matchTemplate to get a correlation score between the
current document's first page and all the first pages of the database of templates.
If the best candidate has a correlation score higher than a minimum threshold, the
template is considered as recognized.

We housed the database of templates and their configuration files on a bucket S3
on AWS, queried from inside a Docker image containing the pipeline.

After this, each page of the current document we needed to process had to link
to its matching page of the identified reference template. The use of that step is
to ensure that the algorithms know on which page they are working. This is crucial
to determine which information corresponds to which question on the document.
The pipeline compares the first page of one reference document to the first page
of another in treatment, and so on. If there are missing pages or unordered scans,
the pipeline sends the document for manual review. Comparison page by page
uses the same principle as template recognition, with heavy use of our
dear cv2.matchTemplate.

Once we identify the pages, the information boxes of each page are then
automatically detected. The detection is done by mainly using the
functions cv2.morphologyEx and cv2.connectedComponentsWithStats from OpenCV.
cv2.morphologyEx to apply a horizontal and vertical edge filter on the pages.
And, cv2.connectedComponentsWithStats finds the closed boxes created by the
vertical and horizontal edges and returns their positions.

After, one more filtering is applied to keep the boxes fulfilling particular position
and dimension constraints. From the final positions, the pipeline crops the
information boxes from the main page image. The boxes, in our case, are
containing the answers to the questions of the document. The pipeline specifies
constraints in the config file of the template.

If the pipeline functions did not detect all information boxes on a page, then the
step is assumed to be failed, and the pipeline sends the document for manual
review.

This pipeline sends cropped images to a Convolutional Neural Network (CNN). The
network of neurons already trained decides each checkbox and associates it with
a confidence level. The confidence level is the probability associated with the
label of the content of the box. If it is under a certain threshold probability, it
means the model is unsure about the content, and the pipeline sends the
document for manual review.

If all the previous steps have succeeded, the pipeline sends the answers to the
client in a JSON format.

The challenges during document information extraction

We met a few challenges during the development; the variety of templates, the
variety of human behavior, and the hard reliability requirements.

Variety of templates

First, for the company, there are about ten different templates currently in use. To
have good coverage, the pipeline had to be able to recognize a few of them. We
opted for the two most common ones, who make 90% of all documents.
Moreover, for each template, we needed a configuration file for the algorithm to
link the detected boxes to their question specifications.

The solution: Because this configuration can be complex for a non-initiated user,
we created a template generator to add any new template in a few clicks.

Variety of human behavior

Another challenge was to realize the variety of human behavior in filling
documents and try to cope with it. We had to find the trade-off between
maximizing the coverage of automation and minimizing the process's complexity.
A complexity that increases with the more particular cases you want to cover.

Moreover, especially for the classification of boxes with the Neural Network, it is
impossible to ensure 0% error in the current framework. Because the documents
were not initially created to be automatically treated, customers sometimes fill
their answers in the most interesting way.

The solution: There is no correct answer to find a good trade-off. Depending on
the client, you could spend more time developing a highly complex infrastructure
to process almost 100% of documents, therefore maximizing the coverage. But
the cost of creating such an infrastructure would not be worth the gain. Usually, a
client will want to optimize his Return On Investment (ROI), keeping in mind that
paper documents are getting rarer with the all-digital era.

Concerning the filling of the boxes, the only way to cope with it is to install a clean
framework where we explain the method of filling to the customers. That
framework should appear on future templates.

A hard requirement in reliabil ity for document information extraction

Finally, we had to meet a hard requirement in reliability, ideally 0% of error. In
machine learning terms, we had to assure 100% precision, which is the
consequence of depleting the recall, a.k.a. the coverage.

High reliability is necessary for our clients to have complete trust in the
automation and integrate it into their operations. However, this has the
consequence of diminishing the number of documents that we can automate.

The solution: For a given architecture, the typical way to find the best pipeline
with this 100% precision while maximizing the coverage is to do hyperparameters
optimization. Using the dataset of previous documents, one can tweak the
parameters at each step while fulfilling the two conditions. The parameters here
are mainly the thresholds of correlation for template and page recognition and
the confidence threshold of the neural network. If we choose a very harsh
threshold, we will assure 100% precision, but the coverage will deplete. If we
choose it too loosely, errors will arise, and 100% precision is lost. We developed
two versions.

The tools for document information extraction

We used a series of tools to implement such a pipeline and put it into full
production, namely OpenCV, PyTorch, Docker, and AWS.

OpenCV

We made heavy use of the OpenCV library at different steps of the
process. OpenCV is a known open-source library for classical computer vision.
We used it for template recognition, page order checking, and automatic
detection of the information boxes.

PyTorch

We developed the neural network model in PyTorch. It is a Convolutional Neural
Network (CNN), perfect for image classification. Transfer learning was applied by
starting from the pre-trained ResNet50 architecture before training on the
client’s images. The CNN is giving the class and a probability score on how
confident it is about its choice. This score is helpful to ensure no
misclassifications.

Docker

We deployed our pipeline in a container using Docker. The real advantage behind
it is to stop worrying about compatibility issues when deploying to new servers.
The process runs in the “black box” container and works on any machine
having Docker installed.

https://opencv.org/
https://pytorch.org/
https://www.docker.com/resources/what-container

Amazon Web Services (AWS) and the Cloud Development Kit

Our client already had multiple services in a stack deployed on AWS. We ensured
to fit this project with the rest of their ecosystem. In practice, it means that the
operations are running daily on the servers of Amazon, rented by our client.

The advantage of using the Cloud Development Kit is that all the infrastructure
can be specified as code and deployed in the command line. The main
components used are Buckets, Lambda functions, and the Elastic Container
Service and Batch. All this allows to deploy Docker containers and adapt flexibly
to the number of documents to process by allocating more or fewer servers.

AWS also offers a tool to do human image labeling on big datasets efficiently. It
was instrumental to train the Neural Network on the client’s data. The tool
dispatches the labeling to different persons who will assign the proper label to
the image.

Conclusion

In the final version of our solution, the client could automate 47% of all
documents coming to the pipeline after the document information extraction. It’s
safe to say this saved the client a considerable amount of time and expenses.

Gain estimation for document information extraction

Our client receives 100 documents each day on average. Each document takes 75
seconds to be manually processed. The client estimates that it costs
about 26.000 € per year. Given the pricing of Amazon servers, our installation
cost should be less than 100 € per year, which is negligible. Because we automate
~50% of the documents, the spared amount per year is ~13.000 €.

The other impact is that because we made the architecture with modularity, it
could be with lesser cost extended to different types of client documents, where
there is information extraction involved.

Limitations and possible improv ements

The pipeline will work if the document is from a suitable template, with pages in
the correct order, and the document has correctly completed information in the
dedicated boxes.

https://aws.amazon.com/

Another possible risk that can arise in such machine learning processes is the
evolution of data. This is called dataset shift. If the types of templates change, if
the quality of the pdf scans deteriorates, the coverage could drop. To address
such a problem, reporting daily performances must be put in place to measure
any sizable difference in results.

Ideas to improve the automation coverage would be to create better-filling
guidelines in the document and only keep one good template for the document.

For the current architecture, two direct improvements could give better results:
improve the boxes' automatic detection (only 75% that could come close to
100%) and an automatic reordering of the pages of an unordered document.

Finally, to ensure a significant ROI, the ideal would be to extend the architecture
to all documents still treated manually containing information boxes.

About Agilytic
Since 2015, Agilytic helps innovative leaders solve their biggest challenges
through the smarter use of data. With over 150 successful projects to date,
we have perfected a pragmatic approach to putting data at the service of
business goals, be they commercial, operational, financial, or human. Reach
out today for a quick introduction, we’d love to hear from you.

	A complete approach to automating document information extraction
	The solution for document information extraction
	The challenges during document information extraction
	Variety of templates
	Variety of human behavior
	A hard requirement in reliability for document information extraction

	The tools for document information extraction
	OpenCV
	PyTorch
	Docker
	Amazon Web Services (AWS) and the Cloud Development Kit

	Conclusion
	Gain estimation for document information extraction
	Limitations and possible improvements

	About Agilytic

